The greenhouse effect

Print


A layer of greenhouse gases – primarily carbon dioxide, methane and nitrous oxide – act as a thermal blanket for the Earth, absorbing heat and warming the surface to a life-supporting average of 59 degrees Fahrenheit (15 degrees Celsius).Most scientists agree the main cause of the current global warming trend is human expansion of the "greenhouse effect" -- warming that results when the atmosphere traps heat radiating from Earth toward space.

Certain gases in the atmosphere behave like the glass on a greenhouse, allowing sunlight to enter, but blocking heat from escaping. Long-lived gases, remaining semi-permanently in the atmosphere, which do not respond physically or chemically to changes in temperature are described as "forcing" climate change whereas gases, such as water, which respond physically or chemically to changes in temperature are seen as "feedbacks."

Gases that contribute to the greenhouse effect include:

 
<b>Not enough greenhouse effect:</b> The planet Mars has a very thin atmosphere, nearly all carbon dioxide.   Because of the low atmospheric pressure, and with little to no methane or water vapor to reinforce the weak greenhouse effect, Mars has a largely frozen surface that shows no evidence of life.
Not enough greenhouse effect: The planet Mars has a very thin atmosphere, nearly all carbon dioxide. Because of the low atmospheric pressure, and with little to no methane or water vapor to reinforce the weak greenhouse effect, Mars has a largely frozen surface that shows no evidence of life.
<b>Too much greenhouse effect:</b> The atmosphere of Venus, like Mars, is nearly all carbon dioxide.  But Venus has about 300 times as much carbon dioxide in its atmosphere as Earth and Mars do, producing a runaway greenhouse effect and a surface temperature hot enough to melt lead.
Too much greenhouse effect: The atmosphere of Venus, like Mars, is nearly all carbon dioxide. But Venus has about 300 times as much carbon dioxide in its atmosphere as Earth and Mars do, producing a runaway greenhouse effect and a surface temperature hot enough to melt lead.

On Earth, human activities are changing the natural greenhouse. Over the last century the burning of fossil fuels like coal and oil has increased the concentration of atmospheric carbon dioxide (CO2). This happens because the coal or oil burning process combines carbon with oxygen in the air to make CO2. To a lesser extent, the clearing of land for agriculture, industry, and other human activities have increased concentrations of greenhouse gases.

The consequences of changing the natural atmospheric greenhouse are difficult to predict, but certain effects seem likely:

The role of human activity

In its recently released Fourth Assessment Report, the Intergovernmental Panel on Climate Change, a group of 1,300 independent scientific experts from countries all over the world under the auspices of the United Nations, concluded there's a more than 90 percent probability that human activities over the past 250 years have warmed our planet.

The industrial activities that our modern civilization depends upon have raised atmospheric carbon dioxide levels from 280 parts per million to 379 parts per million in the last 150 years. The panel also concluded there's a better than 90 percent probability that human-produced greenhouse gases such as carbon dioxide, methane and nitrous oxide have caused much of the observed increase in Earth's temperatures over the past 50 years.

They said the rate of increase in global warming due to these gases is very likely to be unprecedented within the past 10,000 years or more. The panel's full Summary for Policymakers report is online at http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_spm.pdf.

Solar irradiance

It's reasonable to assume that changes in the sun's energy output would cause the climate to change, since the sun is the fundamental source of energy that drives our climate system.

Indeed, studies show that solar variability has played a role in past climate changes. For example, a decrease in solar activity is thought to have triggered the Little Ice Age between approximately 1650 and 1850, when Greenland was largely cut off by ice from 1410 to the 1720s and glaciers advanced in the Alps.

But several lines of evidence show that current global warming cannot be explained by changes in energy from the sun:


References

1Mike Lockwood, “Solar Change and Climate: an update in the light of the current exceptional solar minimum,” Proceedings of the Royal Society A, 2 December 2009, doi 10.1098/rspa.2009.0519;
Judith Lean, “Cycles and trends in solar irradiance and climate,” Wiley Interdisciplinary Reviews: Climate Change, vol. 1, January/February 2010, 111-122.

http://climate.nasa.gov/causes/